Appendix A

Data Assimilation

A.1 Derivation of the Euler-Lagrange Equations

This Section outlines the derivation of the Euler-Lagrange equations presented in Sec-
tion 2.1.3. In order to find the minimum of the objective function, we perform a first
variation on J.
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At the minimum we have §J = 0. Since all variations are considered arbitrary and inde-
pendent, each of the individual partial derivatives of the objective function must vanish.
Obviously, variation of (2.7) with respect to the adjoint parameters p, A and g simply
returns the state equation, i.e. the forward equation (2.8) and its initial condition (2.8b) in
the set of Euler-Lagrange equations.
From the variation of (2.7) with respect to the parameters a and 3, we get
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Using Ao = A|,_, (see below), these are the parameter update equations (2.10).
Next, variation of (2.7) with respect to w yields
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Postmultiplying by C,,(t",t), integrating over ¢”, and using (2.6), we find
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which is the process noise update (2.11a). Similarly, we get the update equation for v.
Variation with respect to X yields
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In this expression, we substitute from (2.3)
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and get the first part of the backward equation after collecting all terms under a single
integral and setting the integrand to zero.

In order to perform the variation with respect to the state Y, we start from (2.7) and
integrate by parts the term containing BY

J=(Z-MX,Y) C;'(Z - M[X,Y))
+(a-a)"Ct (a—a@)+ (8-8)" C5' (8- B)

ty ty tf ty

// TC t t”) // dt dt” +// t t”) ( Il)dtldtll

—2/,u (¢(X,Y;0) + D,P,v)dt

0
T roaT
2(\1Y) |, ~2(\TY) |- 2 [ (a Y 4 ATp(X,Y3a) + ATDW<Y>wa) dt
0

+ 228 (Y], — Yo(B))

From the variation with respect to Y|t:tf we immediately get the terminal condition (2.9a)
for the backward equation. (Recall that ¢,, € (0,tf), i.e. there are no measurements at the
final time ¢7). Similarly, variation with respect to Y|,_, yields
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In this expression, we substitute from (2.3)
ty
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and get the backward equation after collecting all terms under a single integral and setting
the integrand to zero.

A.2 Derivation of the Posterior Covariance Equations

This Section outlines the derivation of the posterior covariance equations of Section 2.4.
Recall that the problem at hand is nonlinear, and that the linearized posterior covariances
derived below are at best approximations of the true posterior covariances. In particular,
we treat the previous estimate as a fixed deterministic input, although strictly speaking the
previous estimate depends on the data and therefore on the measurement error.

A.2.1 Equivalence of Representers and Prior Cross-Covariances

We first prove the fact that the state representers are equal to the linearized (prior) cross-
covariances of the measurement predictions and the states.

L[ X, Y| X'(t) = E*(t) L[ X Y'Y'(t) = T*(t) (2.34)

The idea is to show that Li[X',Y']X’(¢t) and Lg[X’,Y']Y’(t) obey the same differential
equations as Z¥(t) and T*(t), which are of course the state representer equations (2.25).
From the tangent-linear state equation (2.13) and the equation for the prior state (2.22),

we obtain an equation for the perturbation of the state X’ = X X" andy' =y 7"
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For the perturbations of the parameters we write o/ = o — @ and 3’ = 3 — (.
Next, we multiply (A.2) with the scalar Ly[X’,Y”] and take the expectation. We get
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Comparing these equations to the state representer equations (2.25), we see that the
fact (2.34) holds if the following four identities hold.
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For the proof of (A.3)-(A.6) we seek an expression of the form
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To this end, we apply an adjoint technique which avoids the explicit computation of 3¢

and % and yields the derivatives with respect to v, w, «, and ( directly. We first define
as an objective the function for which we need the derivatives.

TP = M X YT + L x X"y 7 (A7)

In order to satisfy the relation between the states X, Y and the inputs v, w, «, and 3, we
adjoin the tangent-linear state equation (2.13) to the objective.
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in (A.8) and then use the resulting expression to compute the first variation of J*.
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We now choose ji*, \¥ and 5\13 such that %(5X = ‘%{f 0Y =0, because then we have
6JF = 6JF = 6LL[X,Y] = Li[X', Y] (A.10)

First, the variation of J* with respect to X and Y yields
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as well as \f = \¥|_, and 5\k|t:tf = 0. Comparing (A.11) with the adjoint represen-

ter equations (2.24), we see that iF and A* obey the same equations as QF and A¥ and
therefore ji* = QF and \* = A*.
The other variations of J* yield
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Using ji* = QF, \¥ = A* and the fact that Li[X’,Y"] is a scalar (for example %&u =
T
6wT% ), we can now write Lg[X', Y] according to (A.9) and (A.10) as
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If we left-multiply this expression with da = o/, take the expectation, and keep in mind
that the cross-covariances (2.4a) between « and v, w or 3 vanish, we find (A.3). Similarly,
multiplication with v, w, and ' yield (A.5), (A.4), and (A.6). This completes our proof of
(2.34).

A.2.2 Derivation of the Posterior Covariance Equations

Before we start with the derivation of the posterior covariances, we prove the following
result. Whereas the representer functions are deterministic, the representer coefficients are
random variables. Their covariance is

brbr = Uk (A.12)
where we defined earlier
U=C, +R and (R = Ly [EL, 1Y (2.27)

This result is easily derived from (2.26). We have
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With L[ X" Y'|Ls[ X", Y'] = L, [Ls[ X", Y'| X', Ls[ X", Y']Y'] = L,[2%,T®] = R,s, the desired
result follows immediately.

We are now finally ready to derive the equations (2.35), (2.36), and (2.37) for the
posterior covariances. Using the previous results, the derivations are straightforward. First,
we expand the expression for the posterior state covariance Cy .
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Using (A.12) and
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we immediately get the corresponding equation in (2.35). The other posterior state covari-
ance equations of can be derived analogously.

In order to derive the posterior covariance of the measurement predictions (2.36), we
expand
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we immediately obtain (2.36).
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Finally, for the covariance of the posterior data residuals (2.37) we expand
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Appendix B

Land Surface Model

B.1 List of Symbols

Tables B.1 to B.8 provide a list of all symbols used in the land surface model. The last
column generally indicates in which spatial dimensions the variables or parameters vary
and whether they are time-dependent. First, a list of the state and observation variables is
shown in Table B.1. The three state variables for soil moisture can be used interchangeably.
They are connected through the Clapp-Hornberger relations (3.4). The soil moisture and
temperature states and the interception water are governed by ODE’s, therefore initial
conditions must be specified.

Next, Table B.2 lists the meteorologic inputs to the model. Tables B.3 and B.4 compile
all the time-dependent variables and parameters. The functional dependence is indicated.
Note that empirical and physical constants are not listed in this functional dependence.
Tables B.5 and B.6 list the time-independent parameters, most of which must be specified
as model inputs. Table B.7 contains all the scalar empirical constants with their values or
appropriate references. Finally, Table B.8 shows all the physical constants in the model.
Those numbers are fixed and never used for calibration.

Recall the notational convention to label most of the empirical constants in the various
parameterizations with x for scalar constants and with 3 for distributed parameters (which
for example depend on texture or vegetation). The empirical parameters are superscripted
with the variable which is being parameterized and subscripted with a number in case more
than one empirical constant is needed.

Moreover, the subscripts r,a,c, g refer to reference (or screen) height, air (within the
canopy), canopy (plant material), and ground, respectively. Note that all variables at screen
height are inputs that are directly measured or derived from meteorologic observations. The
subscripts s and [ are used for shortwave and longwave, s and u are used for saturated and
unsaturated, depending on context. The symbol f always denotes a fraction varying from
0to 1.

Lastly, in our convention the matric head 1, is negative for unsaturated conditions. The
vertical coordinate z is positive upward, and the numbering of the layers increases upward.
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| Symbol | Units | Description | Dimension
Wy -] soil wetness/saturation z,y,2,t
g [m®/m?®) | volumetric soil moisture content
Pg m matric head
Ty K soil surface temperature z,y,t
We m canopy interception water z,y,t
T K canopy temperature z,y,t
€a mb] canopy air vapor pressure z,y,t
Ta K] canopy air temperature z,y,t
| Ts | [K] | radiobrightness temperature | x,y,t |

Table B.1: State variables of the land surface model.

| Symbol | Units | Description | Dimension
P, m/s] precipitation at ref. height z,y,t
R,s W/m?] | incoming shortw. radiation at ref. height | z,v,t
T K] atmospheric temperature at ref. height xz,y,t
er mb] vapor pressure at ref. height z,y,t
U m/s| wind speed at ref. height x,y,t
Ty K] depth average soil temperature z,y, (t)

Table B.2: Meteorologic inputs. The depth average soil temperature changes on a seasonal
time-scale only.
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Sym. | Units Description Dependency Dim.
P m/s throughfall rate of precipitation P,(P-, P;, D, fc) z,y,t
P; m/s interception rate of precipitation P;(Pr, W, W) z,y,t
D. [m/s] dripping rate from interception storage D.(W,, tTP) z,y,t
Sy 1/s] root sink term for transp. loss S (B2, Xg(W ) z,y,2,t
Gy W/m? ground heat flux Gy(RAS, o Y By, Hy) TN
R, W/m2 incoming longw. radiation at ref. height R.i(Tr, €r) z,y,t
Ry W/m? net shortw. radiation at ground surface R (Rrs, ag, fo) z,y,t
R;‘ft W/m? net longw. radiation at ground surface R“et(RTl, Ty, Te, €q,€c, fe) T
RSt W/m? net shortw. radiation at canopy RZ‘?(RTS, ac, fe) z,y,t
RAT W/m? net longw. radiation at canopy R (R, Ty, Te, €g, €c, fe) z,y,t
ag — ground surface albedo ag(Wy,0s) z,y,t
€g — longw. soil surface emissivity eq(Wy) z,y,t
€r - longw. atmospheric emissivity er(er) z,y,t
E, kg/m?®/s| | evapotransp. rate to atmosphere Eo(ea,€r,Ta) T
E, kg/m?/s] | ground surface evap. rate Ey(es(Ty),ea,7qg,74d, fc) AT
E.. kg/m?/s (wet) canopy evap. rate Ecc(es(Te), ea,re, LSAIL fe, fee) z,y,t
EP? | [kg/m?/s] | potential (dry) canopy transp. rate EP%"(es(T.), eq,7c,Ts, LAL fe, fee) | x,y,t
E kg/m?/s] | actual (dry) canopy transp. rate Ect(EftOt,Xg (Wy)) AT
H, W/m? sensible heat flux to atmosphere H,(T:, T, ) T
H, W/m? sensible heat flux at ground surface g( yTa,ra, fe) z,y,t
H. W/m? sensible heat flux from canopy H.(Te,Ta,re, LSAI fe) z,y,t
es mb| saturation vapor pressure es(T) TN
Ue m/s wind speed at canopy height Ue(Ur, 2r, 20, dc, he) TN
U m/s friction velocity U (Ur, 2r, 20, dc) z,y,t
Ta s/m atmospheric resistance Ta(Ur, 2r, 20, dc) z,y,t
Te s/m bulk canopy resistance re(ue) T
T4 s/m aerodynamic resistance within canopy ra(uc) z,y,t
Tg s/m surface resistance of bare soil rg(Wy,0s) AT
Ts s/m] stomatal resistance rs(re™, Xe(Rrs)) z,y,t
Cy J/m?/K] | vol. heat capacity of wet top soil layer Cq(pgv,cq, Wy, 0s) z,y,t
Ag W/m/K] | thermal conductivity of wet top soil layer | Ag(Wy,05) z,y,t
qt m/s moisture flux b.c. at top q:(Ps, Eg) z,y,t
@ m/s moisture flux b.c. at bottom q(Ku) TN
K, m/s unsaturated hydraulic conductivity K. (K, Wy) T,Y,2,t
fee -] wet canopy fraction (for canopy evap.) fee(We, W) z,y,t
Xg — stress function for water-limited transp. xXge(Wa, ¥™", fr) z,Y, 2,1
Xe - solar radiation influence on transp. Xe(Rrs) z,y,t

Table B.3: Forcing variables and time-dependent parameters for the land surface model.
Note that we assume the soil thermal diffusivity K7 to be constant in time (Section 3.1.7).
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| Symbol | Units | Description | Dependency | Dim. |

kg microw. dielectric constant of wet soil kg(Wg,0s,kw, kga, fs, fc) | z,y,t
kuw microw. dielectric constant of water kw (kwo, kwoo s Vry Tw) z,y,t
kwo - static dielectric constant of water kwo(Ty) z,y,t
Tw s] relaxation time of water Tw(Ty) z,y,t
Egp -] rough surface microw. emissivity for polariz. p egp(kg, Pr) z,y,t

f;;‘oc’th -] smooth surface microw. emissivity for polariz. p sZ‘{,‘DOth(kg, or) z,y,t
" K] eff. soil temp. for microw. emission TSN(Ty, ky) z,y,t
bg rad] | in-soil propagation angle bg(kg, dr) z,y,t
Zgrad m| gradient RT effective depth Zgrad (Qe, ¢g) z,y,t
Qe 1/m] | microw. attenuation coefficient ae(kg,vr) z,y,t

Table B.4: Time-dependent variables and parameters for the Radiative Transfer model.
Note that ¢y, 2grad, and . are part of the Gradient RT approximation and not used.
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Symbol | Units | Description/Value

Model Input ? | Dim.

g m depth of surface temp. layer yes -
A m depth of finite difference soil moisture layer i | yes z
A; [m] depth of layer “around” soil moisture node i | A(A) z
0s m? /m?) porosity yes T,Y,2
K m/s] saturated hydraulic conductivity yes T,Y, 2
CH [m)] [Clapp and Hornberger, 1978] yes T,Y, 2
BCE - [Clapp and Hornberger, 1978] yes z,Y, 2
WTe - surface resistance param. (0.25 ... 0.6) yes T,y
Ty s/m] surface resistance param. (3000 ... 7000) yes z,y
Jeikd -] surface resistance param. B (W', rg™) T,y
Kr m?/s] thermal diffusivity of soil surface layer yes T,y
dg m| damping depth of temp. forcing dg(KT) T,y
Qg -] param. of force-restore approx. ag(dg,dg) T,y
Iy 1/s] coefficient in force-restore approx. I'y(ay) T,y
T, s/m] coefficient in force-restore approx. I, (Kr) z,y
Pgb kg/m?] bulk density of (dry) soil in layer &4 Pab(0s, pg) z,y
Cg J/kg/K] | specific heat of dry soil in layer d4 yes T,y
2r m reference (or screen) height yes -
he m vegetation height (also for bare soil zo) yes z,y, (t)
de m zero plane displacement height de(he) z,y, (t)
20 m roughness length zo(h) z,y, (t)
[re \/s/m] Sellers and Dorman, 1987 yes z,y, (t)
[T -] Sellers and Dorman, 1987 yes z,y, (t)
it s/m] minimum stomatal resistance yes z,y, (t)
Qe — shortw. canopy albedo yes z,y, (t)
€c - longw. canopy emissivity yes z,y, (t)
wirax m| max intercepted water wra*(LSAI) z,y, (t)
tdrip s] dripping time for canopy interception storage | yes z,y, (t)
fe -] area fraction shaded by vegetation canopy yes z,y, (t)
i m wilting point yes z,y, (t)
dr m typical rooting depth yes z,y, (t)
PR 1/m)| root density distribution pr(dr) z,y, 2, (t)
fr — root distribution factor fr(dr) x,y, 2, (t)
LAI - (green) leaf area index yes z,y, (1)
SAI - stem (and dead leaf) area index yes z,y, (t)
LSAI — leaf and stem area index LSAI( LAL SAI) | z,y,(t)
ﬁfg [W/m/K] | —0.197 (clay), 0.243 (loam), 0.228 (sand) (yes) z,y
ﬁ;\g [W/m/K] | —0.962 (clay), 0.393 (loam), —2.406 (sand) (yes) z,y
ﬂg,\g [W/m/K] | 2.521 (clay), 1.534 (loam), 4.909 (sand) (ves) z,y

Table B.5: Time-independent parameters for the land surface model. Note that we assume
the soil thermal diffusivity K7 to be a constant in time (Section 3.1.7), that is the ﬁi}‘ 7 are
not used. Note also that vegetation parameters are time-dependent on the time-scale of
plant growth, which is indicated by (t).
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| Symbol | Units Description | Model Input ? | Dim. |
Vr HZ| microw. observation frequency yes -
o rad) (in-air) look-angle from nadir at ref. height yes -
fs — sand fraction in layer g yes T,y
fo — clay fraction in layer dg4 yes T,y
GFs — Dobson dielectric mixing model param. B%(fs, fc) T,y
B9 - surface roughness param. [Choudhury et al., 1979] yes T,y
Wy kg/m?] | vegetation water content yes z,y, (t)
8% m?/kg] | “vegetation b param.” [Jackson and Schmugge, 1991] | yes z,y, (t)
Oe — canopy optical depth 0c(Way, ¢r) z,y, (t)
Qe — canopy microwave attenuation ac(de) z,y, (t)
Zgrey m grey body RT param. yes -

Table B.6: Time-independent parameters for the Radiative Transfer model. Note that veg-

etation parameters are time-dependent on the time-scale of plant growth, which is indicated

by (t).

| Symbol | Value | Units |
Ky? 0.25 —
Ky? 0.125 -
Ky 0.74 -
K 0.0049 —
Ky? 0.9 —
Ky 0.18 —
K9 10 | [s/m] ]
Ky ? 0.943 —
Ko’ 0.223 —
Kg? 1.68-1072 —
Ky? —527-107° —
re 0.63 -
K0 0.13 —
[ «"  J107%...107° | [m] |
KY© 50...100 —]
Kxe 100...200 W/m?]
I P IS
Ky 0.65 -]
Ko 1.09 -]
Kal 0.11 [-]
Ky -0.18 -]
KFwo 88.045 ]
Fopwo —0.4147 [1/K]
Fop o 6.295 - 10~* [1/K?]
Fopwo 1.075-107° [1/K°]
KIY 1.1109 - 107 | [g]
KgY —3.824-10" " | [s/K]
Fg® 6.938 - 10~ 1 s/K?
Ky —5.096 - 10~ '° | [s/K°
| Ceraa | 1.03 | ] |

Table B.7: Scalar empirical constants.
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| Symbol | Value | Units Description
Pw 1000 kg/m? density of water
Pa 1.20 kg/m?® density of air
Pg 2.65 - 10° kg/m? density of soil particles in layer dg4
wd 2w /86400 1/s] angular frequency of diurnal cycle
L 2.5 - 10° J/kg] latent heat of vaporization
o 5.57-107% | [W/m?/K?] | Stefan-Boltzmann constant
y 0.65 mb/K]| psychrometric constant
Ca 1004 J/kg/K specific heat of air at constant pressure
Cw 4187 J/kg/K specific heat of water
K 0.4 -] von Karman constant
To 273.15 K] reference temperature
kga 4.67 — microw. dielectric constant of dry soil
kwoo 4.9 - high frequency dielectric constant of water
g 9.81 m/s?] acceleration due to gravity
Clight 3.108 m/s] speed of light

Table B.8: Physical constants
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